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SUMMARY 

The purpose of this paper is to describe a possible beam 

instability caused by the coupling of the power supplies ripple 

and the remanent field errors. 

Numerical application to the main ring of our analysis 

agrees more or less with the observed decay of 7 GeV coasting 

beam. There is the qualitative disagreement that no change in 

beam decay was observed when the quadrupole ripple was reduced 

by the addition of a filter. However, this test was performed 

rather hurriedly and did not take into account the sextupole 

components of the remanent field in the dipoles where the ripple 

was not reduced. 

More careful experiments on the effect of reducing the 

ripple should be carried out. 

The author wishes to thank S. Ohnuma and L. C. Teng for 
their valid and decisive contributions to this work. 

a Operated by Universities Research Association Inc. Under Contract with the United States Atomic Energy Commission 
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THE ANALYSIS OF MOTION 

1. The equation of motion with magnetic field ripple and 

magnetic field random errors is 

y" + IKo(s) + Kp(s)ly = F(s), (1) 

where F(s) is the random error function and Kp(s) is the quad- 

rupole error caused by the field ripple. Actually Kp(s) is a 

function of s and of the time t; but for a particle with con- 

stant velocity v, the t-dependence of K can be converted in 
P 

s-dependence by the relation: s = vt. 

Ko(s) is the main magnetic structure function. 

We assume two independent solutions of the homogeneous 

equation associated to (1) can be written with the form 

y(s) = w(s)e +iJl(s) , J,, (s) = L. 
W2 

12) 

If Kp(s) = 0 and Ko(s) being periodic, also the amplitude 

function w(s) is periodic. More generally, for Kp(s) # 0, w(s) 

has not the periodicity of Ko(s) but that resulting by the com- 

bination of the ripple and revolution frequencies. 

Let v. and B, be respectively the betatron oscillations 

number per turn and the amplitude Courant-Snyder function for 

Kp(S) = 0. 

Then, introduce the phase-advance $ and the total betatron 

oscillations number per turn v by 

d@=+=!+ (3) 
00 VW 

Taking I$ as running variable instead of s, the two 
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independent solutions (2) can be written with the form 

@ 
y(@) = w($)eti v($)d$ I (4) 

According to (3), I$ adds 2n each turn, and v = v. if 

KP 
= 0, when w2 = B,. 

With the Floquet transformations 

17(@) = Y/W and d$=+$-, 
00 

Eq. (1) transforms to 

n-" - $ q' + v2n = w3v2F($) I (5) 

where now prime denotes derivation to I$. It is easy to see the 

Eqs. (4) are two independent solutions of the homogeneous equa- 

tion associated with (5). 

A particular integral of the inhomogeneous Eq. (5) with 

initial conditions n = 0 and n' = 0 at $I = 0 is 

In particular after m revolutions counted from $ = 0 it 

is 

rim = n(2rm) = \r'vo:$' F1m)sin(/r"vdx)do (6) 
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2. Let us take for the random errors function 

F(w) = + y & ~Y(f~--np) 
on=1 0 n 

(7) 

L = bending magnet length, 

P = bending magnets curvature radius, 

E n = relative error of the magnetic field in the n-th 

magnet: En = sn+M = sn+2M = . . . . 

@O 
= 6, at the n-th magnet position, 

n 
M = number of magnets per turn. 

The numbers ~1, e2, . . . sM have rms value <E> and average value 

very close to zero. In the following we shall write also 

E n = cin<E>. (8) 

Inserting (7) in (6) and antitransforming from n to y 

yield 
1 

voBo 
T 

y Bo' & sin 

i 

2am 
L 

Y, = ; lm vd$. 

VT n=l nv2 ,z 
m n M 

If we take 

6, = 3, = PO and vm = vn = v. 
m n 

we certainly do not make a large error and we have, with (8) 

Ya 

2nm 

ym = ; 'Bo<E> 
n=l 

n sin I v(+)W. 
nE 

M 
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Let us introduce complex notation with 
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Pm = y an exp i 
n=l 

i 

It is 

ym 
= ; ijb<E>Irn Pm , 

11 
ym ' = 2 B,Cs>Re . 

3. Because the magnetic field ripple has the form of an 

oscillation, presumably we can specify v also as an oscillation 

in 4 with period N, which has the meaning of number of turns 

but is not necessarily an integer. We write 

e' v = vo+r sin R, r<<u 0' v. not integer 

so that 

i 27rmv 
Pm = e 

( o -rNcos2# ) x yM u e-i(2n$o-rNcos2r&) (g) 

n=l n 

Let us break the summation in two sums: 

y= y+ f" 
kM 

+ . . . + 1 + . . . + 
n=l n=l n=M+l n=(k-l)M+l n=(m-l)M+l 

= 
n=l k=l 

(10) 
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and make use of the following relation 

eizcost = +- 
7 

where JR is the Bessel function of the R-th order. 

With (10) and (11) we have for Pm 

Pm = e 0 x 
jl=-co n=l 

II 
,! 1 

n 
x e 12’ “-“O M e 

ia(m-1) (i-vo)sin57;j+vf]. 

sinn g-v0 
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(11) 

(12) 

4. We distinguish two possible cases: 

(a) N and v. are such that i-v0 is not an integer for 

whatever value of II. Then the quantity 

R sin7r m-vo i 1 
can never be zero. The R-th term in the summation 

expressing Pm is thus oscillating with m with period- 

icity of N/t%-Nvo) turns and amplitude 

JR(rN) 

Pm is, then, a limited quantity for whatever value of 

m, and, hence, the motion is stable, although Pm can 
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have also a very large magnitude depending on how 
R much E-vo is close to an integer. 

(b) N and v o are such that k-v0 is an integer at least 

for one value of R. The resonance condition is 

a f$-vo = g (13) 

where 9, and g are integer numbers. 

Assume that (13) is satisfied by the couple of 

values !L = R. and g = go, namely 

a 
N o='o- 
LL” (14) 

Subtracting (14) from (13) side by side gives 

R-Ro _ - - N. 
g-go (15) 

Thus any other couple of values .k,g must satisfy (15). 

Because R-R0 and g-go are integer numbers, the condition 

(13) can be satisfied by no more than one couple of 

values R,g if N is an irrational number. 

If N is a rational number we can write 

N=$ 

where S and I are integer numbers, relatively 

prime. In this case (15) can be replaced by 

R = Ro+hS g = go+hI (16) 

where h is any integer number. 
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Special values of Ro,go are obtained, splitting 

V o in its integer p and fractional 6 part (v. = p+6), 

so that 

4, = -P %O 
= 6N. (17) 

The second of these relations is the resonance 

condition. We can say that there is a resonance when 

the quantity 6N is an integer number. 

Let us neglect the steady oscillatory terms in the 

summation (12). This is a good approximation for Pm, 

of course, after a large number of turns m. We have 

with the help of (16) and (17) 

'rn = e 
21rmvo-rNcos9) 

x 

h=-co n=l 
1. (18) 

5. For g<<M we have 
1 
z 

=hT. (19) 

On the other hand, the Bessel function with constant argument 

depends rather strongly on the order, with maximum usually for 

low orders. Thus we can retain only the term h = 0 in the 
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summation (18) and neglect all the others. 

It is, neglecting also the ripple modulation and any 

phase angle, 

'rn c: m/t? J6N (rN) einm(P+26) . (20) 

From (20) we infer that the particle executes an oscilla- 

tion with amplitude increasing linearly with the number of turns 

performed m, 

ym = amsin[nm(p+26)1, 

a m = g %E>rnfi J&N(rN). (21) 

APPLICATIONS 

6. General. To check our analytical results we performed 

also a simulation of the process on the computer. This takes 

randomly M numbers with normal distribution of unit variance. 

These numbers are used in the place of the en's to calculate 

P m, according to Eq. (9) but with th e summation split as in Eq. 

(10). The only difference is that now v is modulated as follows 

v = vo-rsin($/N) . 

Except one case we shall mention later, we always took N 

as a rational number and required the computer to output Pm 

every S=NI turns. Indeed, as proved in the Appendix, Pm adds 

a constant quantity each S turns if we are on a resonance. 
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Vice versa this is a very simple way to check on the computer 

whether a special case is a resonance. 

(a) The results shown in Fig. 1 are to check that 

6N = integer is the resonance condition. We ran 

6 cases with several N and AN, and all the other 

quantities constant. In particular, we used the 

same series of M = 10 random numbers c1 's. n 
We found confirmation that the slope of the 

resonance is essentially given by the Bessel function 

J6N. All the cases with the same 6N have the same 

slope and this decreases as 6N increases. 

(b) All the cases in Fig. 1 satisfy also the condition 

voN = integer. To prove that this is not an essential 

condition for resonance, we ran other 6 cases. The 

results are shown in Fig. 2. 

All these cases, as well as all the other cases 

shown in Figs. 3, 4 and 5, have been processed with 

the same identical series of M = 20 random numbers 

CXn’S. We can see in Fig. 2 that also the two cases 

with p = 3 and pN # integer are resonances because 

also for them 6N = integer. Nevertheless, it must 

be noted that the quantity vON (integer or not) seems 

to have an effect on the slope of the resonance. This 

can be seen also in Fig. 3 where the special case of 
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N = 10+1/3 has been run for p = 3 and p = 4. This 

could be explained by the fact that M = 20 is not 

enough larger than p = 4 or p = 3, so that (19) 

results in a too poor approximation. 

(c) Fig. 3 shows results of the cases we ran with all 

the parameters constant, with the exception of N. 

The resonance is for N = 10+1/3, and we wanted to 

show that as N moves away from this value we do not 

have a resonance any more, but the slope bends and 

even oscillates. Nevertheless, values of N very 

close to the resonance value lead to oscillations 

of very large amplitude. 

(d) A group of cases with N constant and v. changing are 

shown in Fig. 4. The result is the same effect 

observed in (c). 

(e) Finally, we processed a case with N irrational. Because 

now S+-,we had to require the computer to output Pm 

every turn. The results are shown in Fig. 5. As all 

the other cases, also this has been run with the Double 

Precision feature available with the computer. Thus 

the first 17 significant digits of N and 6 have been 

surely assimilated by the computer. Only in this way 

and because we carried on the calculation up to m = 100, 
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the definition of "irrational number" makes sense. 

The slope observed in Fig. 5 is very close to 

the slope of the cases in Fig. 2 with p = 3 and 

N6 = 2. 

7. NAL Main Ring. We have 

L- 
$0 

- 40 cm N = 70 

M = 774 r = 0.1 

<E> = 5x10 -4 6 = 0.2 

which give 

a nl = m 0.114 x 10m3 cm. (22) 

If the main ring semiaperture is about 5 cm the beam will 

hit the wall, according to (22), after -4010~ turns corresponding 

to -0.8 seconds. 

These numbers agree fairly well with the experimental beam 

observations. 

The numerical results of the process simulated in the 

computer are shown in Fig. 6 only for m up to 200. For such 

low values of m, of course, as expected, the steady oscillatory 

terms in (12) are predominant and the rising terms in (18) are 

negligible to all. 

The trajectory is mainly an oscillation at the frequency 

-l/6 turns. This frequency is modulated by the field ripple at 
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the frequency of N turns, Besides, we can observe that the 

oscillation level is modulated too at the same ripple frequency 

of N turns. 

When m increases the oscillation level also increases at 

constant speed. For instance, from our numerical computation 

we got 
m 'rn 
70 0.0262 

140 0.0523 
210 0.0786 

. 

which averaging gives 
-3 a cm. m = m 0.0075.10 

This quantity is a factor 15 smaller than that in (22), but it 

is just one case. We ran the computer 10 times with 10 different 

series of random numbers, an, and we carried out P m at m = 70. 

These are the results 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

p70 
0.0262 

-0.0603 
0.160 
0.310 

-0.0256 
-0.164 
-0.424 
-0.0967 
-0.157 

0.236 

am/m (in cm) 

0.0075 x lo-3 
-0.0172 

0.0457 
0.0886 

-0.0073 
-0.0469 
-0.1211 
-0.0276 
-0.0449 

0.0674 

rms value 0.0588 x 1O-3 
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The rms value is in good agreement with the analytical 

result (Eq. 21). Then, we infer that in order to have an order 

of magnitude for Pm, Eq. (21) does very well. 

8. The most important parameters r, 6 and N enter all 

together the expression 

JdN (rN) . 

Values of this quantity are reported in Table 1 for some 

numbers r, 6, N. 

TABLE 1 

N r 6 JGN(rN) = . . . . . , . . . 

60 0.1 0.2 J12(6) 0.5452 1O-3 

70 0.1 0.2 Jl4(7) 0.2052 1O-3 

80 0.1 0.2 J16(8) 0.7801 1O-4 
__- -.-. ._._ __..._..__.. -_- . . I.-.I ...I.....,. _ . _ . . ..- -., 

70 0.05 0.2 J14(3.5) -0.2 1O-7 

70 0.10 0.2 J14(7.0) 0.2052 1O-3 

70 0.15 0.2 J14(10.5) -0.2 10-l 
-- .- _.__. -_--- _._. - _.,... ____ 

70 0.1 0.1 J7(7) 0.2336 

70 0.1 0.2 J14(7) 0.2025 1O-3 

70 0.1 0.3 J21(7) 0.2966 1O-8 

Irrelevant is the dependence on the periodicity N. 

There is only a factor 2 or 3 when N changes from 70 down to 

60 or from 70 up to 80. 
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Significant, instead, is the dependence on the amplitude 

of the ripple r and the tuning of the machine 6. Reducing the 

ripple only by a factor 2 has the effect of also reducing am, 

but by a factor 104, which means the beam (if it can survive) 

hits the wall after -4.108 turns or -lo4 seconds. 

Also, the dependence on the tuning 6 is very critical. 

Assuming that the unperturbed v. of the machine is 20.2, detuning 

the machine down to 20.1 has the effect of having a more unstable 

beam, which should hit the wall after only -40 turns or -1 ms. 

But tuning the machine up to 20.3 keeps the beam much more 

stable. In this case am decreases by a factor 105, and the 

beam would hit the wall after lo5 seconds. That because the 

stability of the beam depends on how much v. is close to an 

integer number. 

9. The above numbers refer to the case all the particles 

in the beam have the same v 
0’ 

Let us consider the graph in Fig. 

7 for a beam with a vo-spread. To continue to refer to the NAL 

main ring we assume that v. = 20.20 is the average value across 

the beam and to have a vo-spread of about +0.05. If N = 70 (but 

the situation does not change very much if N has any other value 

around 70), we see from Fig. 7 that the beam contains 7 resonances 

all corresponding to 6N between 11 and 17 included. This means, 

as also one can see from Fig. 8, that the beam is scattered by 

the resonances in many streams with different slopes. The par- 

ticles with low v. will hit the wall first, and the particles 

with higher v. will hit the wall at a later time. 
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APPENDIX 

Let us write m = gS = gIN and break the summation in Eq. 

(9) into two sums 

n=l n=l n=SM+l 
+ n=(k”f:sM+l + * * * + 7;, sM+l 

kSM 
= F 1 

k=l n=(k-l)SM+l. 

Then we have 

P 
i(2mgSvo-rN) 

gs = e x 

x cj !M ane-i[2r(k-i)SM+n vO-rNcos2$&]. 

k=l n=l 

If the fractional part of vo, 6, satisfies the resonance 

condition 

N6 = integer 

the above equation writes also 

(A) 

-irN SM 
P gs = e g 1 ane 

2.rr$o-rNcos2n& 
I 

n=l 

= g As. 

This means that, if the resonance condition (A) is satisfied, 

the displacement Pm adds the quantity 

A =e- 
S 

each S = NI turns 

irN SM 
1 une 

-i 2i#vo-rNcos2nb 
c I 

n=l 
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